
3/20/2019

1

Structural Testing

John T. Bell

Department of Computer Science

University of Illinois, Chicago

based on material from chapter ? of “Software Testing
and Analysis”, by Pezze and Young.

2

Overview

• Structural testing considers the internal
structure of code when determining tests.

• A flaw will not reveal itself unless the line
containing the flaw is executed.

• Unfortunately, executing a flaw does not
always produce (noticeable) error results.

• Best used as a metric for measuring progress
and estimating coverage than as an end goal.

3/20/2019

2

3

Preview of Structural Methods

Cyclomatic Path Condition

4

Running Example (See Handout)
Flaw on line 25 may not always show

3/20/2019

3

5

Statement Testing

• 𝐶𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 =
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

• Statement coverage is the most basic, and is
subsumed by all other coverages.

• Basic block coverage is similar, in that it attempts
to reach every node on the flow graph.

• Consider the trade-offs of more simple tests
versus fewer complex tests in the test suite.

6

Condition Testing

• Branch Coverage

• Basic Condition Coverage

• Branch and Condition Coverage

• Compound Condition Coverage

• MC/DC – Modified Condition/Decision
Coverage

3/20/2019

4

7

Branch Coverage

• 𝐶𝐵𝑟𝑎𝑛𝑐ℎ =
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

• Branches correspond to arcs on the flow graph.

• A test (suite) may cover all statements without
covering all branches, whenever a branch
contains no statements. E.g. a missing “else”.

• Consider if node F were removed from the
sample control flow graph.

8

Basic Condition Coverage

• 𝐶𝑏𝑎𝑠𝑖𝑐_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =
𝑜𝑓 𝑡𝑟𝑢𝑡ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑

2 ∗ # 𝑜𝑓 𝑏𝑎𝑠𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

• Goal is to evaluate every basic condition in
both true and false cases.

• Basic condition criteria can be covered without
covering all branches (or statements.)
– For example a compound conditional in which the

overall result stays the same for all test cases.

– See (corrected) example on next slide.

3/20/2019

5

9

Corrections to page 220

• Test case T4 = { “first+test%9Ktest%K9” }
always evaluates to TRUE on line 27, even
though both true and false cases are
evaluated for the basic conditions on that line.

• Tree shown is for an && test, not an || test:

10

Branch and Condition Coverage

• A test suite satisfies branch and condition
coverage criteria if it satisfies both branch
coverage criteria and condition coverage
criteria.

• A more complete extension is the compound
condition adequacy criteria covered on the
next slide.

3/20/2019

6

11

Compound Condition Coverage

• Requires a test for all possible evaluations of
compound conditions, e.g. reaching all leaves of
logic trees such as the following, from line 27,
if(DH == -1 || DL == -1)

• Note that short-circuiting
may reduce the number of
leaves that must be
evaluated, but not always.

12

A && B && C && D && E
requires only 6 test cases:

Test Case A B C D E Result

1 True True True True True True

2 True True True True False False

3 True True True False False

4 True True False False

5 True False False

6 False False

3/20/2019

7

13

(((A||B) && C) || D) && E
requires 13

Test Case A B C D E Result

1 True True True True

2 False True True True True

3 True False True True True

4 False True False True True True

5 False False True True True

6 True True False False

7 False True True False False

8 True False True False False

9 False True False True False False

10 False False True False False

11 True False False False

12 False True False False False

13 False False False False

14

MC/DC – Modified
Condition/Decision Coverage

• Requires each basic condition to independently affect
the result of each decision.

• I.e., for each basic condition, there must be 2 tests for
which all other conditions are the same, and for which
the result is true in one case and false in the other, as
a direct result of the basic condition under evaluation.

• Can be shown to only require N + 1 tests

Test Case A B C D E Result

1 True True True True

6 True True False False

3/20/2019

8

15

Now (((A||B) && C) || D) && E
only requires 6

Test Case A B C D E Result

1 True F True F True True

2 False True True F True True

3 True F False True True True

6 True F True F False False

11 True F False False T False

13 False False T False T False

• Test case numbers match those of the previous slide.

• Boxes marked with T and F were blank (don’t care)
previously, but must now be given a specific value.

16

Path Testing

• Path Coverage

• Boundary Interior Coverage

• Loop Boundary Adequacy Criterion

• LCSAJ - Linear Code Sequence and Jump

• Cyclomatic Testing

3/20/2019

9

17

Basic Path Coverage

• 𝐶𝑝𝑎𝑡ℎ =
𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑜𝑓 𝑝𝑎𝑡ℎ𝑠

• For any program involving loops, the
denominator is infinite, so Cpath is always 0.

18

Boundary Interior Coverage

• Group paths that
differ only by # of
loop iterations.

• “Unfold” control
flow graph at first
repeating node to
generate required
sub-paths.

3/20/2019

10

19

Sample Code with Problem When
Line 29 is Executed On First Iteration

Missing
in

code

Problem here,
if loop exited on first pass.

20

Loop Boundary Adequacy

A test suite satisfies the loop boundary adequacy
criteria iff for each loop present:

• 0: In at least one test, control reaches the loop
and then the loop condition evaluates to false.

• 1: In at least one test, the loop is executed exactly
one time.

• Many: In at least one test the loop is executed
more than one time. (This can vary depending on
circumstances. How many is “many”?)

3/20/2019

11

21

LCSAJ – Linear Code Sequence
and Jump

• An LCSAJ is a section of code through which
execution can proceed sequentially,
terminated by a jump.

• Specifications vary with the required length of
sequential LCSAJs.

– TERN+2 for N consecutive LCSAJs

– TER0 for statement testing

– TER1 for branch testing.

22

Cyclomatic Testing

• From graph theory, any connected graph with
e edges and n nodes can be spanned by e-n+2
independent subpaths, where e-n+2 is the
cyclomatic complexity of the graph.

• Any real path can be formed by the
combination of independent subpaths.

• It is not required to test any particular set of
independent subpaths, only that there be
e-n+2 of them (as a goal.)

3/20/2019

12

23

Procedure Call Testing

• For each procedure, there should be tests that
exercise every entry point and every exit point.
– This is normally covered by statement coverage, but

should also be covered in context, i.e. when called by
other procedures other than drivers.

• Every call to a procedure should be exercised, e.g.
when a procedure is called from many places.

• The sequence of procedure calls, i.e. the “path”
through the calling tree, may also be important.

24

Comparing Structural Testing Criteria

Cyclomatic Path Condition

3/20/2019

13

25

The Infeasibility Problem

• 100% Coverage is not always possible, or even
desirable, in the face of redundant error
checking and diminishing returns.

• One approach is to set a target less than
100%, but knowing exactly what is tricky.

• Another is to find and justify exceptions /
exclusions, but that can be extremely difficult.

